

2

Bitcoin

Abstraction:
Distributed	Ledger

3

Implementation:	Blockchain

4

this	
happened

hashes	&	
signatures

this	
happened

hashes	&	
signatures

this	
happened

hashes	&	
signatures

Implementation:	Blockchain

5

this	
happened

hashes	&	
signatures

this	
happened

hashes	&	
signatures

this	
happened

hashes	&	
signatures

Tamper-proof

6

Smart Contracts

Ledger + Turing-complete scripting language?

“Computer protocols that facilitate, verify, or
enforce the negotiation or performance of
a contract, or that make a contractual
clause unnecessary” (Wikipedia)

Nick Szabo 1997

Most popular implementation: Ethereum

7

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}
Looks like an object in a language

8

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}

Long-lived state

Tracks who can vote, who voted, choices.

Built-in data types: maps, arrays, scalars.

9

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}

Functions to manipulate state

Vote for a particular proposal

10

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}

No voting twice

11

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}

Record vote

12

Procedure for Thread i
contract Ballot {
mapping(address => Voter)

public voters;
… // more state decls

function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;
proposals[proposal].voteCount
+= sender.weight;

}
…

}

On a blockchain this is a shared object!

Big idea #1: permit parallel execution, adapting STM
techniques, i.e., speculative execution with rollback

No concurrency control built in to contract language

All contract code executed sequentially

Every transaction executed sequentially by everyone

Big idea #2: publish concurrent schedules to the
blockchain for everyone to exploit parallelism

Smart	Contracts	on	the	Blockchain

Clients ….

Miners …

Validators …

Clients send transactions & contracts to miners

Miners collect transactions…

state state state state

Apply them one-at-a-time to compute new state

Block has contracts & new state

state

There can only be one…

Miners compete to append their new block to the chain

state
state

state

state
state

state

state state state state

state

Validators replay all block contracts in order …

state
state

state

state
state

state
… for every block

Validators replay all block contracts in order …

forever

Every validator eventually executes every contract

Contracts	are	re-executed…

sequentially

Contracts	are	re-executed…

Why is sequential execution so wrong?

Poor throughput

Competitive disadvantage for miners

Cannot exploit multicore technology

Adding	Concurrency

Naïve Concurrency?

Nope

Inconsistent shared state

Voters could vote twice

Add explicit concurrency to the language?

Add explicit concurrency to the language?

Existing implicit concurrency model
bad enough

Nope

The DAO incident result of poorly
thought-through concurrency model

These	contracts	never	
conflict,	so	it’s	safe	to	run	

them	concurrently

Concurrency via
Static Analysis?

Concurrency via
Static Analysis? These	contracts	never	

conflict,	so	it’s	safe	to	run	
them	concurrently

Undecidable in theory & Intractable in practice

Because contracts call other contracts …

Nope

Dynamic call graph …

Might have to inspect every contract ever

Big Idea #1

Let miners discover …

using speculative runtime mechanisms …

a safe, serializable concurrent schedule …

for the transactions in its block …

adapted from Software Transactional Memory.

Instrument shared objects & variables

E.g., locks on methods and accessors

Function are atomic sections

Conflict detected?

Delay or restart one thread

Keep track of “happens before”

Result is safe concurrent schedule + description

Positive

Usually, conflict is rare

Easy concurrent executions

Less delay is competitive advantage

Better HW usage, less energy, etc.

Negative

Sometimes transactions do conflict

Executions must be sequential

Synchronization overhead means delay

But here are many tricks …

Negative

Sometimes transactions do conflict

Executions must be sequential

Synchronization overhead means delay

But here are many tricks …

Positive

Usually, conflict is rare

Easy concurrent executions

Less delay is competitive advantage

Better HW usage, less energy, etc.

Take your choice

What about validators

Cannot mimic miners by discovering schedules

Parallel executions non-deterministic

Might find a different safe concurrent schedule

Or resort to sequential execution

Big Idea #2

Let miners publish …

to be replayed by validators …

the safe, serializable concurrent schedule …

for the transactions in its block …

as a checkable fork-join program

Generate	a	Fork-Join	Program

47

Similar to CILK model

Efficient work-
stealing scheduler

Can check validity

No locks, rollbacks

deterministic

Why should I share
my highly-parallel
schedule with
rivals?

To encourage other miners to
validate and build on your block!

Prototype	and	Evaluation

4-core	3.07GHz	Intel	Xeon	W3550

Available hardware

4-core	3.07GHz	Intel	Xeon	W3550
JVM

Ethereum VM not multithreaded

4-core	3.07GHz	Intel	Xeon	W3550
JVM
Scala

Lots of useful libraries

4-core	3.07GHz	Intel	Xeon	W3550
JVM
Scala

ScalaSTM

Basic transaction support

4-core	3.07GHz	Intel	Xeon	W3550
JVM
Scala

ScalaSTM
Proust	Boosting	Library

Abstract locks, undo logs, etc….

Benchmarks

JVM with JIT turned off

3 cores (1 more reserved for GC)

Single-benchmark blocks

Tunable Conflict rate

Mixed-benchmark blocks

Benchmark #1: Ballot

From Solidity documentation

Shared state: voter mapping

Benchmark: all voters registered, vote only

Tunable Conflict = double voting

Varying Transactions per Block

Varying Levels of Conflict

Benchmark #2: SimpleAuction

From Solidity documentation

Shared state: maxBid

Tunable Conflict = bidPlusOne() vs refund

Benchmark: bidders bid, request refunds

Varying Transactions per Block

Varying Levels of Conflict

Benchmark #3: EtherDoc

From website

Tracks Document Metadata (including owner)

Tunable Conflict = transfer vs query

Shared state: owner’s list of docs

Varying Transactions per Block

Varying Levels of Conflict

Benchmark #4: Mixed

All of the above

Equal proportions

Varying Transactions per Block

Varying Levels of Conflict

Future	Work

Conclusions

Speculation speeds up mining when …

Threads kept busy

Conflict rate moderate

Improvements with only 3 threads

Thank	You!
Questions?

