. -(\,110 '

A0S i\(€

Mowind nov
1 n(\\.\\e {OY ?
AT\ \\\ .

Abstraction:
Distributed Ledger

Cash

___ Date ' Decrease | Balance

Jan. 1, 20X3 pforwa 50,000
Jan. 2, 20 j 60,000
65,000

Paid rent | 58,000

ent , 55,000
Ja‘ EVerYOne agrees on cont 59,000

Jan. 8, 20X3 Paid bills . , 57,000
Jan. 10, 20X3 Paid tax 9 < 56,000
Jan. 12, 20X3 Collected receivable ! 63,000

Implementation: Blockchain

this
happened

this
happened

hashes &
signatures

hashes &
signatures

hashe:
signatL

Implementation: Blockchain

Tamper-proof

hashes &
signatures

hashes &
signatures

hashe:
signatL

Smart Contracts E

Baacies
k’.&a e

Nick Szabo1997 ,\,;
Most populanmplementatlon Ethereum "‘“‘!m /

e — A ERSEITIE TR £
Computer protocols that faC|I|tate verlfy, or

enforce the negotiation or performance of

a contract, or that make a contractual

clause unnecessary” (Wlklpedla)

IRl = g
Ledger + Turlng Complete scrlptlng Ianguage’?

b AR AS AR AVACASTREEN /]

contract Ballot {
mapping (address => Voter)
public voters;
.. // more state decls
function vote (uint proposal)
Voter sender = voters[msg.sender];
1f (sender.voted)
throw;

sender .voted = true;

sender .vote = proposal;

proposals|[proposal] .voteCount
+= sender .weight;

Looks like an object in a language

contract Ballot

mapping (address => Voter)
public voters;
. // more state decls
] ote (uint proposal)
sender = voters|[msg.sender];
(sender.voted)

contract Ballot {
mapping (address => Voter)
public voters;

Vote for a partlcular proposal

=oteCount

contract Ballot {
mapping (address => Voter)
public voters;
.. // more state decls
function vote (uint proposal)

1f (sender.voted)
throw;
sender.votgd =
sender.vote\= proposal;
propcsals[proi-sal].vcteCount
+= sender .weight;

No voting twice

contract Ballot {
mapping (address => Voter)
public voters;
.. // more state decls
function vote (uint
Voter sender = voters . sender] ;
1f (sender.voted)
throw;

sender .voted = true;

sender .vote = proposal;

proposals|[proposal] .voteCount
+= sender .weight;

contract Ballot {
mapping (address => Voter)
public voters;
.. // more state decls
function vote (uint proposal)
Voter sender = voters[msg.sender];
1f (sender.voted)

On a blockchain this is a shared object!

sender .vote = proposal;
proposals [proposal] .voteCount
+= sender.weight;

All contract code executed sequentially

Every transaction executed sequentially by everyone

No concurrency control built in to contract language

Big idea #1: permit parallel execution, adapting STM
techniques, i.e., speculative execution with rollback

Big idea #2: publish concurrent schedules to the
blockchain for everyone to exploit parallelism

Smart Contracts on the Blockchain

Clients send transactions & contracts to miners

Miners collect transactions...

Apply them one-at-a-time to compute new state

state

Block has contracts & new state

There can only be one..

Q

*

Miners compete to append their new block to the chain

Validators replay all block contracts in order ...

*x
*

2
state state state W) [State

A

Validators replay aII block Contracts In order ...

P

*
*

... for every block

Contracts are re-executed...

forever

\~. -
g - N () »
= »a

S
Q
)
>
O
Q
X
V
Q
S
Q
. -
(qu)
Vp)
)
O
(O
S
i)
-
O
O

Why is sequential execution so wrong?

Poorthroughput B

oa ="
S 2 T i D

£ 89 :

N . D WONEPAT W5 W
RNy e e Nl B S
> ” o S 2

Cannot exploit multi

Competitive disadv

S

Adding Concurrency

Naive Concurrency?

....

Voters could vote twice

Add explicit concurrency to the language?

\ 7]
S 3 hr, :
\ 0= eaO's/ / \¥

Existing implicit concurrency model
bad enough
4Py

The DAO incident result of poorly
thought-through concurrency model

conflict, so it’s safe to run
them concurrently

Concurrency via | = - - —
StaticAna|ySiS? ese CoONntracCts never

Concurrency via | =
Static Analysis? These contracts never

. conflict, so it’s safe to run
Ew them concurrently
_
Undecidable in theory & Intractable in practice

Dynamic call graph ...
¥ Y]

L,’ Might have to inspect every contract ever

r ‘ "\:‘ -.
g .

Big Idea #1

Let miners

for the transactlons In Iits block

. Pg 4;5&.\ 4 |
using speculative runtlme mechanlsms

- / /// %, “"!!
“® y

Vi

adapted from Software Transactional Memory.

/s

Instrument shared objects & variables

E.g., locks on methods and accessors

Function are atomic sections

Conflict detected?

Delay or restart one thread

Keep track of “happens before”

Result is safe concurrent schedule + description

Usually, conflict is rare

Easy concurrent executions |

Less delay is competitive advantage
Better HW usage, less energy, eftc.

Usually, conflict is rare

Easy concurrent executions

Less delay is competitive advantage
Better HW usage, less energy, eftc.

Take your choice

What about validators

Cannot mimic miners by discovering schedules

Parallel executions non-deterministic
Might find a different safe concurrent schedule

Or resort to sequential execution

Big ldea #2

Let miners publish ...

as a checkable fork-join program | °

Generate a Fork-Join Program

Similar to CILK model

‘/ Efficient work-
l stealing scheduler

\‘/‘ i Can check validity

\l No locks, rollbacks

47

pea | —] ,' e ; =
Why should | share |

-
my highly-parallel = 5
schedule with SN
rivals? '

To encourage other miners to L
~ “# validate and build on your block!

: S '-- ~~d.— . ’ L T, -
< % :‘s. . - ‘-'&- ‘ -)
: - - - .

Prototype and Evaluation

Available hardware

4-core 3.07GHz Intel Xeon W3550

Ethereum VM not multithreaded

4-core 3.07GHz Intel Xeon W3550

Lots of useful libraries

4-core 3.07GHz Intel Xeon W3550

Basic transaction support

ScalaSTM
Scala
JVM
4-core 3.07GHz Intel Xeon W3550

Abstract locks, undo logs, etc....

Proust Boosting Library
ScalaSTM
Scala
JVM
4-core 3.07GHz Intel Xeon W3550

JVM with JIT turned off

|
)

Tunable Conflict rate

Benchmark #1: Ballot
From Solidity documentation

Benchmark: all voters registered, vote only

Shared state: voter mapping

Tunable Conflict = double voting

Speedup Over Serial

Ballot Speedups

2.5 I~ Miner O -1 2.5
Validator A

0 I I I I I I I 0
0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

Speedup Over Serial

Ballot Speedups

>

2.5 — Miner -
Validator
2 >
T —_ - _~—'/—'_"“"-—'-———»_. _A‘,_, — —
150 55— o— - -
1
0.5 | l
0 | | | |
0 0.2 0.4 0.6 0.8

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

2.5

1.5

0.5

Benchmark #2: SimpleAuction

From Solidity documentation

Benchmark: bidders bid, request refunds

Shared state: maxBid

Tunable Conflict = bidPlusOne() vs refund

SimpleAuction Speedups

2.5 I~ Miner O -1 25
Validator A D

Speedup Over Serial

0 I | | I I I I 0
0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

SimpleAuction Speedups

2.5 — Miner O — 2.5
Validator A

Speedup Over Serial

0 | | l l 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

Benchmark #3: EtherDoc

Tracks Document Metadata (including owner)
Shared state: owner’s list of docs

Tunable Conflict = transfer vs query

Speedup Over Serial

EtherDoc Speedups

2.5 I~ Miner O ;& Xs
Validator A _‘___‘ﬁ(_/-//%_._-‘ A”—
T - -+ 2
1.5 -)@/@W; 1.5
1

0.5 - — 0.5

0 | | | I | | | 0
0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

Speedup Over Serial

EtherDoc Speedups

Miner O | 2.9

T~ A Validator A

~—

I I I I 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

Benchmark #4: Mixed

All of the above

Equal proportions

Speedup Over Serial

Mixed Speedups

2.5 I~ Miner O -1 2.5
Validator A

2 A — 2

1.5 — 1.5

1 1

0.5 — 0.5

0 | | | | | | | 0

0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

Mixed Speedups

25 Miner O 1 2.5
a Validator A
= 2y SN 1,
I .
 — \\
> 15 e\@\\j 15
O
Q.
z 1 D
()]
b}
Q.
O 05 1 o5
0 | | | | 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

Future Work

Conclusions

Speculation speeds up mining when ...

Thank You!
Questions?

