
How SuperC Works

Paul Gazzillo and Robert Grimm
New York University

SuperC: Parsing All of C by Taming the Preprocessor

Solution Approach

Preprocessor

Parser

Source Code
Expands macros and

includes headers

Preserves conditionals!

The Parser

Evaluation

C source code written in both C and the
preprocessor
•Source code contains many programs
 #ifdef CONFIG_USB_DEVICEFS
 extern int usbfs_init(void);
 #else
 static inline int usbfs_init(void){return 0;}
 #endif

•Linux x86 has 6,000 configuration variables, 26,000 combinations

•Turning on all configuration variables yields only 80% of code
[Tartler et al., OSR ’11]

•Macros expand to arbitrary C fragments
 #define for_each_class(c) \
 for (c = highest_class; c; c = c->next)

•Directives appear between arbitrary C fragments
 #define for_each_class(c) \
 for (c = highest_class; c; c = c->next)

Problem: Parsing All of C
We need better C tools
•Linux x86 is large and complex
•Need source code browsers
•7,500+ compilation units, 5.5 million lines

•Need bug finders
•1,000 found by static checkers [Chou et al., SOSP ’01]

•Need refactoring tools
•150+ errors due to interface changes [Padioleau et al., EuroSys ’08]

•These tools all need to parse C first

#ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
 if (imajor(inode) == 10)
 i = 31;
 else
#endif
 i = iminor(inode) – 32;

Static Choice

AssignmentIf-Then-Else

CONFIG_..._PSAUX ! CONFIG_..._PSAUX

Fork subparsers
on conditional

One subparser for
the entire

if-then-else

One subparser for
just the assignment

Merge and create
static choice node

Number of Subparsers Used at Any Given Point
while Parsing Linux x86

0

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

Pe
rc

en
til

e

Number of Subparsers

99% 100%

All Optimizations 21 39

Follow-Set Only 33 468

Naive: >16,000 on 98% of C filesNaive: >16,000 on 98% of C filesNaive: >16,000 on 98% of C files

Performance Across Compilation Units of Linux x86

0

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

Pe
rc

en
til

e

Latency in Seconds

SuperC TypeChef

Max: 10.4s
Max: 931s

Parsing All Configurations
•Forks subparsers at conditionals
•Merges subparsers in the same state after conditionals
•Joins AST subtrees with static choice nodes
•Preserves mutually exclusive configurations

The Preprocessor

#ifdef CONFIG_64BIT
define BITS_PER_LONG 64
#else
define BITS_PER_LONG 32
#endif

__le ## BITS_PER_LONG

__le ##
#ifdef CONFIG_64BIT
 64
#else
 32
#endif

#ifdef CONFIG_64BIT
 __le ## 64
#else
 __le ## 32
#endif

Macro expands
to conditional

One operator:
Two operations

Hoist conditional
around token-paste

The Power of Hoisting
•Works on: token-pasting, stringification, includes, conditional
expressions, macros

•Iterates over conditional branches
•Recurses into nested conditionals
•Duplicates tokens across inner-most branches

Conditionals Invade the Preprocessor
•The preprocessor leaves condtiionals in place
•Conditionals then compose with most preprocessor operations
•Many operations require hoisting

History Repeats Itself: LR Subparsers
•Organizes state in stacks
•Easy forking and merging with DAG

•Is table-driven
•Good performance

•Reuses existing tools and grammars
•The good: most complexity is in table generation
•The bad: shift-reduce & reduce-reduce conflicts

Parsing Real-World C

struct rq {
#ifdef CONFIG_SCHED_HRTICK
ifdef CONFIG_SMP
 int hrtick_csd_pending;
endif
#endif

#ifdef CONFIG_SCHEDSTATS
 struct sched_info rq_sched_info;
#endif
};

Follow-set:
3 subparsers

Naive Forking:
6 subparsers

Follow-set forks fewer subparsers

The follow-set algorithm in action

struct rq {
#ifdef CONFIG_SCHED_HRTICK
ifdef CONFIG_SMP
 int hrtick_csd_pending;
endif
#endif

#ifdef CONFIG_SCHEDSTATS
 struct sched_info rq_sched_info;
#endif
};

Find first token
of each branch

Recursively enter
nested conditionals

Look past
empty “#else”s

Stop after all
configurations

When to Fork Subparsers?
•Naive strategy: fork on every conditional branch
•Blows up on Linux x86
•Conditionals are 40 levels deep, 10 in a row

•Our forking strategy: token follow-set
•All tokens reachable from current position
•Across all configurations

Follow-set supports further optimization
•Shared reductions
•Reduce one stack for many follow-set tokens before forking
•Limits redundant work by subparsers

•Lazy shifts
•Only fork tokens in the nearest condtiional
•Limits number of subparsers needed

•Early Reduces
•Pick reducing subparser before a shifting one
•Improves chances of merging

http://cs.nyu.edu/xtc

Creates an AST for
all configurations

