College of Engineering
uck | and Computer Science

Conditional Compilation Is Deac
Long Live Conditional Compilatio

Paul Gazzillo and Shiyi Wei
ICSE-NIER 2019

@paul_gazzillo & pgazz.com

The C Preprocessor Creates a Dilemma

* Conditional compilation implemented with the C preprocessor
* Really great for performance

* Really bad for software tools

Goal: Replace Preprocessor Usage with C Itself

e Easier for software tools
* Preserve existing C software

* How?
* New C language constructs
e Automate conditional compilation with compiler optimizations

C Use Has Grown!

Language Rank Types Spectrum Ranking
1. Python @® s
. C++ 00s
@0
mj==E - Top programming languages

S0
X X Constrained Gateways and loT
IEEE Spectrum Popularity Rankings, May 2019 devices edge nodes Cloud

C Java Java

Crrt: Python Javascript
May 2019 May 2018 Programming Language

Java C++ Python

1 Java
Javascript C PHP

2 C

3 C++ loT Developer Survey, Eclipse Foundation 2019

4 Python

TIOBE Popularity Rankings, May 2019

Conditional Compilation Makes Reuse Possible

 Linux configurable to many devices

* No extra programming needed

Linux remains the undisputed loT operating system

Once agsin, Linux (T1L8%) remains the leading ¢ iy

Top 10T OPERATING SYSTEMS & DISTROS

6
Afa. o !!l.

[
. ubuntu®

N% ©

debian

C Preprocessor Used Extensively

* Macros used about 1in 4 SLoC, in general [Ernst et al 1999]
e Linux v4.19 (late 2018)

Source lines of code about 12 million
Preprocessor macros defined about 1 million
Preprocessor directives used about 2 million

Preprocessor conditional blocks about 60,000

* Developers use it to hand-optimize object file size
* Compiling all Linux features would make an enormous binary

Conditional Compilation Is Implemented with
the Preprocessor

\#ifdef CONFIG_OF IRQ DOMAIN |
void 1rqg add(int *ops) {
int irg = *ops;
}
I#éndifl

int *ops = NULL;
\#ifdef CONFIG OF_ IRQ
Ops = &1rqg OpS;

1rg add(ops);

Variability Bugs: Existence Depends on
Configuration Settings

3. Null pointer error in #1fdef CONFIG OF IRQ DOMAIN
some configurations void irqg_add(int *ops) {
int irqg = *ops;

}
1. Initialize “ops” #endif
pointer

int *ops = NULL;
2. Only set in some #ifdef CONFIG OF IRQ
configurations Ops = &lrg_oOps;

#endif

J x irqg add(ops);

Only certain configurations have bugs

8

Why Don’t We Just Use a “Better” Language?

e Millions (billions?) of SLoC in active, widely-

used projects 1DON TAlWAYS
* Rust and Go will (hopefully) supplant C, but... | PIWGBAM

* Rust has configuration macros
* H[cfg] attributes
* Go has build constraints

BUT wn_u
1 USE Pvmo_i‘

Great Research Efforts Tackling Conditional Compilation

Variation Programming with the Choice Calculus*

Martin Erwig and Eric Walkingshaw

School of EECS
Oregon State University

* New language

e Capture conditional compilation as
variability

* Similar challenges for analysis tools

Variability-Aware Static Analysis at Scale: An Empirical Study

ALEXANDER VON RHEIN, CQSE GmbH, Germany

JORG LIEBIG, 4Soft GmbH, Germany

ANDREAS JANKER, Capgemini Deutschland GmbH, Germany
CHRISTIAN KASTNER, Carnegie Mellon University, USA
SVEN APEL, University of Passau, Germany

 “Lift” analyses to all configurations

e State-of-the-art is intraprocedural
data flow

* Much left to match pure C tools, e.g.,
* Points-to analysis
Abstract interpretation
Model checking
Separation logic
Symbolic execution

Best of Both Worlds:
Keep C and Automate Conditional Compilation

Current Compiler Our Approach

Preprocessor
- |

Front-End <— Source Code — Front-End

' 7

Conditional Compilation

\ L]

Middle-End/Back-End —{-» Object Code < Middle-End/Back-End

Values

|
|

: Program |

| Values !

|

* Replace preprocessor with a new compiler phase
e Configuration macros -> program values

* Conditional compilation becomes compiler optimization
e Constant prop + dead code elimination = #ifdef

11

What are the Constructs of the Combined
Language?

* Formal semantics typically relies on well-defined abstract syntax

* The combined C/preprocessor language has wonky syntax
e Some usage should probably be restricted

#define LBRACE {
int main() LBRACE

}

* What are the semantics of the combined language?
* CMod formally defined #include usage [Srivastava et al., TSE 2008]

Map Preprocessor Usage to C

bool CONFIG OF IRQ;

int *ops = NULL; int *ops = NULL;

#ifdef CONFIG OF IRQ if (CONFIG_OF_IRQ) {
ops = &irq ops; Oops = &1rq_oOps;

#endif }
irg add(ops); irq_add(ops);

Macro -> program variable

#ifdef -> C conditional

Conditional compilation -> dead code elimination
Transformation has been done before [losif-Lazar et al., Sci. Prog. 2017]

Some Constructs Are Questionable

bool CONFIG PSAUX;

#ifdef CONFIG PSAUX 1f (CONFIG_PSAUX) {
. . . _ i1f (1imajor == 10)
if (imajor == 10) i = 31+

i = 31;
else
else . .
1 = 1minor — 32;

dif
ren % } else {

i = iminor — 32; .
1 = 1minor — 32;

}

* Code duplication is awkward
e Could alter conditions to have only two branches

* Should such cases be prohibited?

#tifdefs Can Appear Around Declarations

bool CONFIG QUOTA;
struct { struct { -
ulé size;

16 size;
#ifdef CONFIG QUOTA » ul6é size

#ézzzfguota; int attribute ((config (CONFIG SMP))) quota;

}

* #ifdefs frequently surround declarations and definitions

* Akin to a dependent type
* Type and existence of "quota" depends on program variable

* Similarity observed before in [Chen et al., TOPLAS 2014]

Conclusion

* Preprocessor dilemma
* Great for performance
e Bad for tools

e Goal: Replace preprocessor usage with C itself
e Automate conditional compilation
* Extensions for some preprocessor use cases

* Future work
* Language definition: What are the right constructs? What should be illegal?
e Empirical evaluation of how often translation is possible
* New compiler phase and optimizations

W @paul_gazzillo & pgazz.com

