
Conditional Compilation is Dead,
Long Live Conditional Compilation!

Paul Gazzillo
University of Central Florida

paul.gazzillo@ucf.edu

Shiyi Wei
University of Texas at Dallas

swei@utdallas.edu

Abstract—Highly-configurable systems written in C form our
most critical computing infrastructure. The preprocessor is inte-
gral to C, because conditional compilation enables such systems
to produce efficient object code. However, the preprocessor makes
code harder to reason about for both humans and tools. Previous
approaches to this challenge developed new program analyses
for unpreprocessed source code or developed new languages
and constructs to replace the preprocessor. But having special-
purpose analyses means maintaining a new toolchain, while
new languages face adoption challenges and do not help with
existing software. We propose the best of worlds: eliminate the
preprocessor but preserve its benefits. Our design replaces pre-
processor usage with C itself, augmented with syntax-preserving,
backwards-compatible dependent types. We discuss automated
conditional compilation to replicate preprocessor performance.
Our approach opens new directions for research into new com-
piler optimizations, dependent types for configurable software,
and automated translation away from preprocessor use.

Keywords—conditional compilation, preprocessor, C language,
variability, dependent types

I. INTRODUCTION

Highly-configurable software such as the Linux kernel and
the Apache web server form our most critical infrastructure,
underpinning everything from high-performance computing
clusters to Internet-of-Things devices. Keeping these systems
secure and reliable is essential. This software’s variability,
i.e., its ability to be configured and compiled with various
combinations of features, enables one codebase to target
different hardware and application-specific requirements. The
Linux kernel, for instance, runs web servers, cell phones,
refrigerators, and more.

Some of the largest and most configurable software is
written in C. Linux, for instance, has more than 14,000 config-
uration options. Unfortunately, standard practice for these and
most C software is the decades-old practice of implementing
variability ad-hoc with brittle tools. In particular, developers
need to hand-code configurations directly in source code with
extensive preprocessor encodings, which appear as much as
every couple of lines [1]. The preprocessor supports condi-
tional compilation, where the compiler, given configuration
options, produces different object code from the same source
code. Conditional compilation is what enables the extreme
customizability of a single codebase like the Linux kernel.

Supported in part by NSF CCF Awards #1840934 and #1816951

What is wrong with using the preprocessor for implement-
ing variability? Due to the lack of support for variability in the
C language itself, developers have to hand-code conditional
compilation with the preprocessor, which opens the door to
errors appearing in any variation of the compiled code. The
tight coupling between the preprocessor and C language makes
it difficult to understand, debug, and maintain the software.
Due to this difficulty, software tools for C rarely consider the
preprocessor usage fully [2], [3], [4], [5].

We argue the use of the preprocessor has created a dilemma:
(1) the preprocessor is so entrenched in C development that it
is integral to the C language, and (2) the preprocessor is such
a serious impediment to the quality of C code that software
tools cannot be expected to work well with unpreprocessed
code. To the best of our knowledge, our community has tried
to resolve this dilemma with two main research directions.

The first direction is to improve the state of the art in
software tools for C. In recent years, researchers have made
significant progress in developing variability-aware analyses
that work on unpreprocessed C code, including new and
modified algorithms for parsing [6], [7], [8], data-flow anal-
ysis [9], [10], [11], type-checking [12], and rewriting [13].
Nevertheless, there is still a lack of tools that can effectively
detect critical bugs in real-world configurable software such as
Linux across all configurations. More importantly, we believe
this direction is not sustainable. It does not directly tackle the
fundamental issue in developing configurable C software, i.e.,
hand-coding configurations with the preprocessor lead to bugs
and performance issues. In addition, research on “variability-
oblivious” program analysis marches on. Trying to maintain
a variability-aware toolchain in parallel means having to play
catch up with substantial engineering effort.

The second direction is to develop new preprocessors [14],
[15] or adopt better development practices for config-
urable system software. Feature-Oriented Software Design
(FOSD) [16] has brought new programming language con-
structs and paradigms, such as variational data structures [11],
the choice calculus and variational programming [17], and
variational execution [18], [19]. These approaches make fea-
tures, i.e., configuration options, explicit in the language,
which enables easier analysis on configurable code [16].
Language adoption, however, depends on more than just good
science; it depends on social factors as well [20]. In spite
of its known issues, C remains a popular language [21].



Preprocessor

Front-End

Middle-End/Back-End

Conditional Compilation

Front-End

Middle-End/Back-End

Current Compiler Our Approach

Source Code

Object Code

Macro
Values

Program
Values

Fig. 1: Comparison of compiler phases.

Moreover, even if all new projects adopted good development
methodologies, there are still pervasive C codebases like the
Linux kernel that benefit from continued tool development.

We instead outline a new direction that resolves the dilemma
by striking a balance between replacing the preprocessor (to
enable tool support) and preserving the use of C (to ease
adoption). Ideally, we would like to eliminate preprocessor us-
age altogether. The preprocessor’s value proposition, however,
is high-performance object code. Our approach uses existing
C constructs plus a syntax-preserving extension to the type
system to support some common usage of the preprocessor.
To replicate the performance benefits of the preprocessor, we
present a new conditional compilation phase in the compiler.

Our approach entails the following changes to the use of
C for configurable code. (1) Replace the use of preprocessor
conditionals with C conditionals when used within functions,
as recommended by GCC coding standards [22]. (2) Replace
the use of preprocessor macros with C variables for configu-
ration options. (Section II). (3) Extend the C type system with
dependent types that control the existence of declarations via
expressions of C variables (Section III).

Due to the changes above, we propose a new compiler phase
that supports automated conditional compilation by taking C
variable values at compile-time. The compiler uses these val-
ues to resolve dependent type expressions and C conditionals
as much as possible to produce efficient object code. A side
benefit of this approach is that there is no distinction between
compile-time and run-time variability. The developer is free
to use the same program for either. The compiler is then
free to optimize as much at compile-time as possible and add
instrumentation to support run-time configuration.

Finally, our approach introduces interesting new research
questions for our community to investigate (Section IV), in-
cluding new compiler optimizations and automated translation.

II. OVERVIEW

Our goal is to replace preprocessor usage with automated
conditional compilation that results in good object file size
and performance. Figure 1 compares the compilers before
and after removing the preprocessing phase and adding our
proposed conditional compilation phase. The difference is that
compile-time configuration options are no longer passed via
preprocessor macros. Instead, C variable values may be passed
at compile-time. The conditional compilation phase uses these

1 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
2 if (imajor(inode) == 10)
3 i = 31;
4 else
5 #endif
6 i = iminor(inode) - 32;

(a) Implementation with the preprocessor.

1 bool CONFIG_INPUT_MOUSEDEV_PSAUX;
2 if (CONFIG_INPUT_MOUSEDEV_PSAUX) {
3 if (imajor(inode) == 10)
4 i = 31;
5 else
6 i = iminor(inode) - 32;
7 } else {
8 i = iminor(inode) - 32;
9 }

(b) Implementation with our approach.

Fig. 2: Configurable control flow. Adapted from Linux
v2.6.33.3 drivers/input/mousdev.c.

values to optimize the resulting object code by removing code
infeasible for a specific configuration.

The benefits of this approach are that there is only a
single language used to implement configurable code, and
conditional compilation is instead automated by the compiler.
The preprocessor allows implementation of just about any
program semantics, leading to poor tool support. Without the
preprocessor, tools work with a simpler semantics and need
not support the full power of the preprocessor.

We believe this approach can be implemented in an existing
compiler, since most of the C language definition remains un-
changed. There are two possible places to insert the phase in an
existing compiler: just after parsing or just after type checking.
Since we reuse existing syntax, the parser requires little or no
change. In this case, the new phase will take all configuration
options at compile-time and produce a transformed abstracted
syntax tree with any configuration conditions resolved. In the
latter case, C’s static semantics are augmented with dependent
types and a new phase is added after type-checking. This
phase takes uses any given configuration options to resolve
conditionals at compile-time, but produces run-time instru-
mentation to select types according to runtime program values.
A combination of both phases may be possible.

To illustrate how this approach works, take the code
snippet in Figure 2a. This example from the Linux ker-
nel source code uses an #ifdef to alter the pro-
gram, depending on whether the preprocessor macro
CONFIG_INPUT_MOUSEDEV_PSAUX is defined or not.
When the macro is defined, the program contains a complete
if-then-else construct, i.e., lines 2-4 and 6. Line 6 is outside
of the preprocessor conditional, so it is in all configurations.
When the macro is not defined, the resulting object code con-
tains no branch; only the assignment from line 6 is included.

Figure 2b shows how this code snippet would be imple-
mented in our approach. The macro is replaced with the C
variable declared on line 1, while the preprocessor conditional



is replaced with a C conditional on line 2. Notice that the
two versions of the program in Figure 2 are equivalent in
meaning. The if-then-else branch conditioned on imajor is
only evaluated when CONFIG_INPUT_MOUSEDEV_PSAUX
is defined, and the assignment from line 6 of Figure 2a still
appears in all configurations, i.e., in both branches on lines 6
and 8. The use of C conditionals is more restrictive than
#ifdefs. We consider this a benefit, since the “anything
goes” freedom of the preprocessor leads to poor tool support.

The downside is that the performance benefits of the prepro-
cessor are lost, because the resulting object code for Figure 2b
is larger and slower compared to the #ifdef version. Our
version has an extra branch due to line 2, which the prepro-
cessor would have resolved at compile-time. Furthermore, the
branch on line 3 will always appear in the object code, unlike
the preprocessor version, because the configuration option is
a program variable with a value unknown at compile-time.

To replicate the performance benefits of the preprocessor,
our proposed compiler phase allows program variables to be
set at compile-time, akin to partial evaluation. The compiler
can remove the code for disabled configuration options without
relying on preprocessor directives. The branches on lines 2
and 3 in Figure 2b are optimized away via constant prop-
agation and dead code elimination, as long as the value of
CONFIG_INPUT_MOUSEDEV_PSAUX is known at compile-
time. With constant folding, even expressions involving C vari-
ables (e.g., CONFIG_USB && CONFIG_PAGES > 0) can
be evaluated at compile-time and used to perform conditional
compilation via dead code elimination.

GCC coding standards [22] even recommend using C
conditionals over preprocessor conditionals when possible,
and Linux developers have been converting #ifdefs to C
conditionals1. This practice, however, only converts control
structure, not the conditional expressions, which are still
preprocessor macros. Macros are still used to provide constants
to the compiler.

Overall, our approach expands on best practices that prefer
C conditionals over preprocessor conditionals by replacing
preprocessor usage entirely. C program variables are used
in place of macros, which requires the compiler to accept
program values at compile-time. This solution allows the
compiler to optimize away code controlled by unselected
configuration options.

III. DEPENDENT TYPES FOR CONDITIONAL COMPILATION

Transformation of #ifdefs to C conditionals is not
enough, because #ifdefs may appear anywhere in C code,
including around declarations and function definitions. Since
we use C variables as configuration options, type declarations
can now include C variables. The existence of a declaration is
predicated on C variables, which leads us to adopt the use of
dependent types [23] in order to support configurable code.

Figure 3a, another code snippet extracted from the Linux
kernel source, shows a common use of the preprocessor to

1https://lkml.org/lkml/2015/5/20/484

1 struct {
2 u16 i_inline_size;
3 #ifdef CONFIG_QUOTA
4 qsize_t i_reserved_quota;
5 #endif
6 }

(a) Implementation with the preprocessor.

1 bool CONFIG_QUOTA;
2 struct {
3 u16 i_inline_size;
4 qsize_t __attribute__((config (CONFIG_QUOTA)))

i_reserved_quota;
5 }

(b) Implementation with our approach.

Fig. 3: Configurable struct definition. Adapted from Linux
v4.18 fs/ext/ext4.h.

1 #ifdef CONFIG_SMP
2 extern void cpu_load_update_active(struct rq *this_rq);
3 #else
4 static inline void cpu_load_update_active(struct rq *

this_rq) { }
5 #endif

(a) Implementation with the preprocessor.

1 bool CONFIG_SMP;
2 extern void __attribute__((config (CONFIG_SMP)))

cpu_load_update_active(struct rq *this_rq);
3 static void __attribute__((config (!CONFIG_SMP)))

cpu_load_update_active(struct rq *this_rq) { }

(b) Implementation with our approach.

Fig. 4: Configurable function definition. Adapted from Linux
v4.18 kernel/sched/sched.h.

configure the fields of a struct. i_reserved_quota is only
a field of the struct when the macro CONFIG_QUOTA is
defined. This can be seen as a variational data type [11].

Figure 3b shows how our approach can support such usage
without the preprocessor. We specify the condition on the
struct field in line 4 using an attribute specifier2 in the type
declaration. Attributes are part of the GCC version of the C
grammar and are used for optimization, but we repurpose this
syntax to express predicates. A Boolean expression of program
variables describes the conditions under which the declaration
exists. In this example, the expression is CONFIG_QUOTA.
Note that this version of the program will compile with a
standard C compiler, if it ignores the attributes. Our proposed
compiler, however, can produce more efficient object code for
certain configurations, since it does not have to lay out memory
for the struct field when its predicate does not hold.

The type predicates also allow for multiple type declarations
of the same identifier. Figure 4a shows two different declara-
tions of the same function. The first (line 2) is an extern
declaration, while the second (line 4) declares the function to
be static and defines its (empty) body. Using the attribute

2https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html



specifiers, Figure 4b shows how different configurations of the
function are declared with the mutually exclusive predicates
CONFIG_SMP and !CONFIG_SMP. While these declarations
are valid C syntax, this program will not compile with the
current C compiler due to the multiple declarations of the same
identifier. This requires our conditional compilation phase to
compile correctly.

Our approach uses dependent types to represent the vari-
ability previously encoded with the preprocessor. The use of
dependent types has been discussed before but dismissed as
too limited for expressing variability, and because they are
undecidable in general [24]. When used only for conditional
compilation, however, this dependent typing scheme is decid-
able, because any program values used in type specifications
are provided at compile-time.

Allowing dependent types for expressing configurable code
opens the door to more sophisticated uses. Suppose we allow
compilation without the values necessary to resolve configu-
ration conditions at compile-time. The compiler then has the
opportunity to perform static type checking and optimization
across multiple configurations simultaneously. Also, blurring
this line between compile-time and run-time configuration
is possible because our approach makes no distinction be-
tween the two. Previous work on dependent types has shown
that adding run-time checks can still make type-checking
decidable [25]. This usage of dependent types enables run-
time variability: for configuration options not provided at
compile-time, the compiler can add instrumentation to read
and evaluate configuration conditions at run-time, much like
variability-aware execution [19]. Moreover, by falling-back
to run-time variability, the user building the software is free
to choose between compile-time and run-time configuration
without having to rewrite any code.

IV. RESEARCH DIRECTIONS

Several research questions emerge from our approach that
guide future work: What new compiler optimization algorithms
can improve conditional compilation? Dead code elimination
works in some cases, but new optimizations may be nec-
essary to match hand-coded preprocessor usage. How much
existing C code can be translated automatically? Previous
work on parsing and transforming unpreprocessed C code
supports the possibility for automatic translations in such
cases [6], [7], [13]. Empirical studies of preprocessor use in
real-world code will help guide new translation algorithms that
infer dependently-typed C. How easily can existing program
analysis and bug-finding techniques be repurposed? While
problems with analyzing unpreprocessed C can be eliminated,
the semantics of the new type system may still need new
theory and development for existing C analyses. What are the
formal semantics of the new type system, and what correctness
properties can be proved? Proving safety properties, such as
the lack of null-pointer errors, would be useful across all
configurations. Adding dependent types to existing formal
semantics for C can enable verification of configurable C code.
How can the compiler efficiently support both compile-time

and run-time variability at the same time? New optimization
algorithms can make the compiled object-code efficient, even
when configuration options are not known at compile-time.

V. CONCLUSION

In this paper, we present a new research direction to
resolve the dilemma of preprocessor usage, showing how some
preprocessor usage can be replaced with C itself while still
retaining the benefits of conditional compilation. Our position
is that both compile-time and run-time variability should be
represented in the same language. We argue that C code
without the preprocessor will be easier to understand and
debug, while preserving C syntax will help adoption. Our
design leads to dependent types for configurable type dec-
larations and compiler optimizations to automate conditional
compilation. Our research opens new optimization, translation,
and verification challenges for our community to investigate.

REFERENCES

[1] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of C preprocessor
use,” IEEE TSE, pp. 1146–1170, Dec 2002.

[2] D. Le, E. Walkingshaw, and M. Erwig, “#ifdef confirmed harmful: Promoting
understandable software variation,” in IEEE VL/HCC, 2011, pp. 143–150.

[3] S. Schulze, E. Jurgens, and J. Feigenspan, “Analyzing the effect of preprocessor
annotations on code clones,” in IEE SCAM, 2011, pp. 115–124.

[4] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi, “The love/hate
relationship with the C preprocessor: An interview study,” in ECOOP, 2015, pp.
495–518.

[5] J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski, “Variability
through the eyes of the programmer,” in ICPC. IEEE Press, 2017, pp. 34–44.

[6] C. Kästner et al., “Variability-aware parsing in the presence of lexical macros and
conditional compilation,” in OOPSLA, Oct. 2011, pp. 805–824.

[7] P. Gazzillo and R. Grimm, “SuperC: Parsing all of c by taming the preprocessor,”
in PLDI. ACM, 2012, pp. 323–334.

[8] A. Garrido and R. Johnson, “Analyzing multiple configurations of a C program,”
in ICSM, Sep. 2005, pp. 379–388.

[9] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini,
“SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead of
Years,” in PLDI. ACM, 2013.

[10] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer, “Scalable
analysis of variable software,” in ESEC/FSE. ACM, 2013, pp. 81–91.

[11] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden, “Variational Data
Structures: Exploring Tradeoffs in Computing with Variability,” in Onward! ACM,
2014, pp. 213–226.

[12] C. Kästner, K. Ostermann, and S. Erdweg, “A Variability-aware Module System,”
in OOPSLA. ACM, 2012, pp. 773–792.

[13] A. F. Iosif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, and A. Wasowski,
“Effective Analysis of C Programs by Rewriting Variability,” CoRR, 2017.

[14] B. McCloskey and E. Brewer, “ASTEC: A New Approach to Refactoring C,” in
ESEC/FSE. ACM, 2005, pp. 21–30.

[15] C. Kästner, “Virtual separation of concerns: Toward preprocessors 2.0,” Magdeburg,
Germany, 5 2010.

[16] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer Publishing Company, Incorporated,
2013.

[17] S. Chen, M. Erwig, and E. Walkingshaw, “A Calculus for Variational Program-
ming,” in ECOOP, 2016, pp. 6:1–6:28.

[18] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Exploring variability-aware
execution for testing plugin-based web applications,” in ICSE, 2014, pp. 907–918.

[19] C.-P. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational execution
with transparent bytecode transformation,” in OOPSLA. ACM Press, 2018.

[20] L. A. Meyerovich and A. S. Rabkin, “Socio-PLT: Principles for Programming
Language Adoption,” in Onward! ACM, 2012, pp. 39–54.

[21] IEEE, “Interactive: The Top Programming Languages 2018,” last
accessed Sep 30, 2018. [Online]. Available: https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2018

[22] GNU, “Coding Standards,” last accessed Sep 30, 2018. [Online]. Available:
https://www.gnu.org/prep/standards/standards.html#Conditional-Compilation

[23] P. Martin-Löf, “Constructive mathematics and computer programming,” in Logic,
Methodology and Philosophy of Science, vol. 104, 1982.

[24] S. Chen, M. Erwig, and E. Walkingshaw, “Extending Type Inference to Variational
Programs,” ACM TOPLAS, 2014.

[25] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “Dependent Types
for Low-Level Programming,” R. De Nicola, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 520–535.


