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highly-configurable software underpins much of 
our computing infrastructure

linux kernel

• 15,000+ configuration options

billions of devices
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developers provide configuration specifications for 
intended combinations of configuration options
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large configuration specifications make 
maintenance harder

• meant to ensure correct software configuration


• about 140,000 lines of kconfig


• complex semantics beyond feature modeling, e.g.,


• typed options


• invisible options


• automated selection of options


• user-interface constructs
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kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB




kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


declaring the option



kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB
giving it a type



kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


text description for 
the user interface



kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


requires IIO and 
INPUT_TOUCHSCREEN



kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


automatically turns on 
IIO_BUFFER_CB



kconfig language example
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


reverse dependency

direct dependency

visibility condition



the unmet dependency bug
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“select should be used with care. select will force a symbol to a value 
without visiting the dependencies. By abusing select you are able to select 
a symbol FOO even if FOO depends on BAR that is not set. In general use 
select only for non-visible symbols (no prompts anywhere) and for symbols 
with no dependencies. That will limit the usefulness but on the other hand 

avoid the illegal configurations all over”

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html



an unmet dependency bug in the wild
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


config IIO_BUFFER

    bool
    prompt "Enable buffer support within IIO"

    depends on IIO


config IIO_BUFFER_CB

    tristate
    prompt "IIO callback buffer"

    depends on IIO && IIO_BUFFER



an unmet dependency bug in the wild
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


config IIO_BUFFER

    bool
    prompt "Enable buffer support within IIO"

    depends on IIO


config IIO_BUFFER_CB

    tristate
    prompt "IIO callback buffer"

    depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on


IIO and IIO_BUFFER



an unmet dependency bug in the wild
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


config IIO_BUFFER

    bool
    prompt "Enable buffer support within IIO"

    depends on IIO


config IIO_BUFFER_CB

    tristate
    prompt "IIO callback buffer"

    depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on


IIO and IIO_BUFFER
TOUCHSCREEN_ADC


forces on

IIO_BUFFER_CB


ignoring dependencies



an unmet dependency bug in the wild
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config TOUCHSCREEN_ADC

    tristate
    prompt "Generic ADC based touchscreen"

    depends on IIO && INPUT_TOUCHSCREEN

    select IIO_BUFFER_CB


config IIO_BUFFER

    bool
    prompt "Enable buffer support within IIO"

    depends on IIO


config IIO_BUFFER_CB

    tristate
    prompt "IIO callback buffer"

    depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on


IIO and IIO_BUFFER
TOUCHSCREEN_ADC


forces on

IIO_BUFFER_CB


ignoring dependencies

how to trigger the bug

disable direct dependencies

enable reverse dependency


(this example leads to a build error)



goal: automated analysis of kconfig

• large specification make scalability a challenge (~140,000 lines)


• many uses of select constructs (~12,000)


• lots of configuration options (~15,000)


• large space of possible input configurations to test


• buggy vs. safe configuration declarations look similar


• complex networks of dependencies obscures behavior
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our solution
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static analysis for kconfig using our new 
software model checking infrastructure



challenges to static analysis of kconfig

• no prior static analysis infrastructure


• insufficient existing work describing kconfig semantics


• scaling to large kconfig specifications (~140.000 lines for linux)


• kconfig syntax changes gradually over time as it is modified
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contributions

1. a formal semantics of kconfig


2. an verification-based unmet dependency finder with optimizations


3. an implementation of the semantics (kclause) and bug finder (kismet)


4. an evaluation of performance, precision, and impact
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simplifies syntax, uses kconfig 
parser from linux source code 
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implements our semantics 
as translator to logic
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generates verification conditions 
for all select constructs
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dispatches to theorem prover and 
generates test files on alarm
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experimental setup
• search for unmet dependency bugs


• linux v5.4.4 source code


• 28 architecture families


• each has its own kconfig specification


• though most contents are shared between architectures (hardware abstraction layer)


• run kismet on each of the 28


• deduplicate results from shared select constructs
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precision (true positives)
• 151 true positive bugs


• 781 before deduplicating the 28 kconfig specifications


• bugs validated by automatically generating test configuration files


• we convert solutions to bug verification condition to linux config file format


• 100% precision


• for boolean and tristate options


• we underapproximate non-boolean options
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recall (false negatives)

• kismet deliberaly underapproximate for non-boolean options


• unknown ground truth (real-world linux specs)


• we generated and tested about 11,000,000 configuration files


• used de-facto standard tool, randconfig, over several sequential months of time


• random testing found 8 true positives not found by kismet


• kismet found 614 not found by randconfig
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performance
• 37 to 90 minutes to run a kconfig specification


• 10,014 to 12,744 select constructs analyzed for each specification


• all 28 specifications: a little less than one sequential day


• fast enough to run daily (speed of linux-next repo)


• more bugs found in one hour compared to random testing


• recall/precision tradeoff for non-boolean underapproximation


• useful complement to randconfig
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impact

• we submitted bug reports (38) and patches for some bugs so far


• limited by manual effort to patch, report, and converse with maintainers


• all reports accepted as true


• at least one known and left in intentionally


• some report still pending reply or resolution


• 15 patches mainlined so far
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conclusion
• highly-configurable software is widespread


• problem: configuration specifications are large and complex


• our goal: automated static analyses for the kconfig specification language


• contributions:


• kconfig formal semantics; an unmet dependency bug-finder; an implementation; an evaluation


• our tooling is fast and precise, has led to accepted patches in linux’s kconfig specs

supported by NSF CCF-1941816 and CCF-1840934
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try it out! 
https://github.com/paulgazz/kmax 

pip3 install kmax

https://github.com/paulgazz/kmax

