
Finding Broken Linux Configuration Specifications
by Statically Analyzing the Kconfig Language

Aug. 25th-26th, 2021ESEC/FSE 2021

Julian Braha (UCF) Paul Gazzillo (UCF)Necip Fazıl Yıldıran (UCF)Jeho Oh (UT Austin)

highly-configurable software underpins much of
our computing infrastructure

linux kernel

• 15,000+ configuration options

billions of devices

2

developers provide configuration specifications for
intended combinations of configuration options

3

large configuration specifications make
maintenance harder

• meant to ensure correct software configuration

• about 140,000 lines of kconfig

• complex semantics beyond feature modeling, e.g.,

• typed options

• invisible options

• automated selection of options

• user-interface constructs

4

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

declaring the option

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB
giving it a type

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

text description for
the user interface

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

requires IIO and
INPUT_TOUCHSCREEN

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

automatically turns on
IIO_BUFFER_CB

kconfig language example

5

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

reverse dependency

direct dependency

visibility condition

the unmet dependency bug

6

“select should be used with care. select will force a symbol to a value
without visiting the dependencies. By abusing select you are able to select
a symbol FOO even if FOO depends on BAR that is not set. In general use
select only for non-visible symbols (no prompts anywhere) and for symbols
with no dependencies. That will limit the usefulness but on the other hand

avoid the illegal configurations all over”

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html

an unmet dependency bug in the wild

7

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

config IIO_BUFFER

 bool
 prompt "Enable buffer support within IIO"

 depends on IIO

config IIO_BUFFER_CB

 tristate
 prompt "IIO callback buffer"

 depends on IIO && IIO_BUFFER

an unmet dependency bug in the wild

7

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

config IIO_BUFFER

 bool
 prompt "Enable buffer support within IIO"

 depends on IIO

config IIO_BUFFER_CB

 tristate
 prompt "IIO callback buffer"

 depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on

IIO and IIO_BUFFER

an unmet dependency bug in the wild

7

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

config IIO_BUFFER

 bool
 prompt "Enable buffer support within IIO"

 depends on IIO

config IIO_BUFFER_CB

 tristate
 prompt "IIO callback buffer"

 depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on

IIO and IIO_BUFFER
TOUCHSCREEN_ADC

forces on

IIO_BUFFER_CB

ignoring dependencies

an unmet dependency bug in the wild

7

config TOUCHSCREEN_ADC

 tristate
 prompt "Generic ADC based touchscreen"

 depends on IIO && INPUT_TOUCHSCREEN

 select IIO_BUFFER_CB

config IIO_BUFFER

 bool
 prompt "Enable buffer support within IIO"

 depends on IIO

config IIO_BUFFER_CB

 tristate
 prompt "IIO callback buffer"

 depends on IIO && IIO_BUFFER

IIO_BUFFER_CB

depends on

IIO and IIO_BUFFER
TOUCHSCREEN_ADC

forces on

IIO_BUFFER_CB

ignoring dependencies

how to trigger the bug

disable direct dependencies

enable reverse dependency

(this example leads to a build error)

goal: automated analysis of kconfig

• large specification make scalability a challenge (~140,000 lines)

• many uses of select constructs (~12,000)

• lots of configuration options (~15,000)

• large space of possible input configurations to test

• buggy vs. safe configuration declarations look similar

• complex networks of dependencies obscures behavior

8

our solution

9

static analysis for kconfig using our new
software model checking infrastructure

challenges to static analysis of kconfig

• no prior static analysis infrastructure

• insufficient existing work describing kconfig semantics

• scaling to large kconfig specifications (~140.000 lines for linux)

• kconfig syntax changes gradually over time as it is modified

10

contributions

1. a formal semantics of kconfig

2. an verification-based unmet dependency finder with optimizations

3. an implementation of the semantics (kclause) and bug finder (kismet)

4. an evaluation of performance, precision, and impact

11

12

12

simplifies syntax, uses kconfig
parser from linux source code

12

implements our semantics
as translator to logic

12

generates verification conditions
for all select constructs

12

dispatches to theorem prover and
generates test files on alarm

12

experimental setup
• search for unmet dependency bugs

• linux v5.4.4 source code

• 28 architecture families

• each has its own kconfig specification

• though most contents are shared between architectures (hardware abstraction layer)

• run kismet on each of the 28

• deduplicate results from shared select constructs

13

precision (true positives)
• 151 true positive bugs

• 781 before deduplicating the 28 kconfig specifications

• bugs validated by automatically generating test configuration files

• we convert solutions to bug verification condition to linux config file format

• 100% precision

• for boolean and tristate options

• we underapproximate non-boolean options

14

recall (false negatives)

• kismet deliberaly underapproximate for non-boolean options

• unknown ground truth (real-world linux specs)

• we generated and tested about 11,000,000 configuration files

• used de-facto standard tool, randconfig, over several sequential months of time

• random testing found 8 true positives not found by kismet

• kismet found 614 not found by randconfig

15

performance
• 37 to 90 minutes to run a kconfig specification

• 10,014 to 12,744 select constructs analyzed for each specification

• all 28 specifications: a little less than one sequential day

• fast enough to run daily (speed of linux-next repo)

• more bugs found in one hour compared to random testing

• recall/precision tradeoff for non-boolean underapproximation

• useful complement to randconfig

16

impact

• we submitted bug reports (38) and patches for some bugs so far

• limited by manual effort to patch, report, and converse with maintainers

• all reports accepted as true

• at least one known and left in intentionally

• some report still pending reply or resolution

• 15 patches mainlined so far

17

conclusion
• highly-configurable software is widespread

• problem: configuration specifications are large and complex

• our goal: automated static analyses for the kconfig specification language

• contributions:

• kconfig formal semantics; an unmet dependency bug-finder; an implementation; an evaluation

• our tooling is fast and precise, has led to accepted patches in linux’s kconfig specs

supported by NSF CCF-1941816 and CCF-1840934

18

try it out!
https://github.com/paulgazz/kmax

pip3 install kmax

https://github.com/paulgazz/kmax

