June 22nd, 2022

THE LINUX FOUNDATION

OPEN SOURCE SUMMIT

NORTH AMERICA

S

Krepair: Automatically Repairing

.config Files to Cover Patches

Paul Gazzillo, Necip Yildiran
University of Central Florida

&
UCF

THE

#tossummit @paul_gazzillo e

the linux kernel has a highly active codebase

~30k mailing list messages per month
~b6k commits per month, 100s per day
e.g., ~13k commits between v5.12 and v5.13

used In billions of devices

all these code changes need testing

Most active 5.12 bug reporters

kernel test robot 184 16.1% intel 0-day kernel test robot

Syzbo! N » suite of tools: compile, boot, performance, etc.

Abact Robot =107 9.4% * runs on new commits in linux-next

Dan Carpenter 44 3.9% _ _

Holk Robot 1360 * continuously runs suite of tools

Stephen Rothwell 28 2.5%

Randy Dunlap 19 1.7%

Kent Overstreet 12 1.1%

Guenter Roeck 11 1.0% SyZbOt

(T:OITEIROEt 1; ;2; « syzkaller system call fuzz tester
olin 1an Ning 070 .

Andrii Nakryiko 8 0.7% e continuously tests the kernel

Juan Vazquez 7 0.6% * runs on linux-next, other versions

Arnd Bergmann 6 0.5%

https://lwn.net/Articles/853039/

need to pick a .config before building and testing

Linux/x86 5.4.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus
--). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for
Search. Legend: [*] built-in [] excluded <M> module < > module capable

I *%*% Compiler: g
General setup

[*] 64-bit kernel
Processor type and features --->
Power management and ACPI options
Bus options (PCI etc.) --->
Binary Emulations --->
Firmware Drivers --->
Virtualization --->
General architecture-dependent options
Enable loadable module support --->
Enable the block layer --->
I0 Schedulers --->
Executable file formats --->
Memory Management options --->

[*] Networking support --->

v(+)

< Exit > < Help > < Save > < Load >

.config selection with menuconfig

* |f .config doesn’t build patch, can’t test it

* the .config file decides what code to build

* ~15k configuration options

* even compile-time errors get committed!

example of bug missed due to wrong .config

e 2016: memory leak bug introduced

* only possible under #ifdef CONFIG_MEDIA_CONTROLLER_DVB

e 2020-05: syzkaller fuzzer capable of finding it

* but CONFIG_MEDIA_CONTROLLER_DVB is disabled in its mem checking config

e 2020-08: sykaller regenerates configs

* happens to include CONFIG_MEDIA_CONTROLLER_DVB

e 2020-11: syzkaller finds the bug

e 2020-12: bug is fixed and backported to linux-stable

5

hard to make a .config to build a specific commit

syzbot uses a set of hand-crafted configs
 runtime environment, architecture

e subsystems under test

* specific to tool

* kept update with changes to defaults

intel O-day kernel test robot uses built-in configs
* all the many defconfigs

* allnoconfig, allyesconfig, allmodconfig

* hundreds of randconfig

unlikely to build a commit with typical .config files

Covered Partially covered Not covered Non-x86 Header only
defconfig - 1,688 : 8,853 1,296 1,177
randconfig 2,189 416 8,333 1,296 1,177
0 2,500 5,000 7,500 10,000 10 938 12,500 13,411

number of commits from v5.13 covered when building for x86
with defconfig or one randconfig

why not just use allyesconfig or allmodconfig?

e good for compile-testing, builds most code

 still doesn’t include all due to mutually-exclusive options, multiple architectures

* not ideal for run-time testing

* slow to build (3 hours vs. 20 minutes for defconfig)
* may not be bootable

* may be too large for testing resource-constrained devices

e can’t do representative performance testing

Key problem: lots of ways to select .config files for testing
but no guarantee that committed changes get built

. our solution:
doesn’t build builds patchfile

patchfile after krepair’s fixes

.config file ——

krepair |— repaired .config file
patchfle ——

benefits

* fully automated

* agnostic to how testers pick their .config files
* retains most original settings

* Kkeeps build size around the same as original

10

why is It so hard to pick a
config file?

build system controls code inclusion/exclusion

e 100s of thousands of lines of build code

e complex dependencies between options

12

build system turns .config file into binaries

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

13

let’s look at the phases of build process

build system

configuration option) Kbuild C C compiler,

) kernel binary
settings (.config) Makefiles preprocessor linker

(vmlinuz)

14

the build system components that select code

configuration option) : Kbuild C) selected
settings (.config) Kcontig \ELGHIEE preprocessor source code

15

patches add and remove lines of code

9
10
11
12
13
14
15
16
17

--- a/drivers/irqgchip/irg-gic.c

+++ b/drivers/irqchip/irqg-gic.c
@@ -127,35 +124,27

#ifdef CONFIG_GIC_NON_BANKED

-static void *gic_get_common_base(union gic_base *base)
+static void enable_frankengic(void)

{

- return base->common_base;

+ static_branch_enable(&frankengic_key);

J

#telse

-#define gic_set_base_accessor(d, f)

+#define enable_frankengic() do while(9)

#endif
@@ -1165,7 +1149,7

- gic_set_base_accessor(gic, gic_get_percpu_base);
+ enable_frankengic();

e #Hifdef controls line inclusion

e CONFIG GIC NON BANKED
needs to be enabled/disabled

* this patch modifies irg-gic.c

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id:85941cé%b851 /1b6f68e34e07b533ec2f1bf7fb065

makefiles control file inclusion

1 // from drivers/irqgchip/Makefile
2 obj-$(CONFIG_ARM_GIC) += 1irqg-gic.o

* irg-gic.o inclusion is controlled by CONFIG_ARM_GIC

e .config must include both makefile and ifdef options

17

kKconfig encodes dependencies between options

O 0 9 O o W N e

[\ I N T e e T T O N = W W
S O o0 NN OO Uk, W N = O

config ARM_GIC
bool
config ARM_GIC_PM
bool
depends on PM
config GIC_NON_BANKED
bool

// from kernel/power/Kconfig
config PM
bool "Device power management core functionality"

// from arch/arm/mach-exynos/Kconfig
1f ARCH_EXYNOS

config ARCH_EXYNOS4
bool "Samsung Exynos4"

default
select GIC_NON_BANKED
endi

18

GIC_NON_BANKED and ARM_GIC
are only enabled by other options

those other options can only be
enabled when dependencies are met

hard just to figure out what config options need to
be set so that your .config file covers a commit

19

Krepair In three steps

.config file ———

krepair |[— repaired .config file
patchfile ———

1. figures out requirements on config options that control the lines of code
2. removes options that are preventing patch from being built

3. adds back options that satisfy the requirements to build the lines of code

20

the krepair algorithm

THE
L JLinux

we convert build system code into constraints

configuration option)
settings (.config)

Kbuild
VW EUGHIES

Kconfig

kclause kmax

N N

logical constraints on .config files for each file:line

22

preprocessor

superc

C

N

—>

configured and
preprocessed
source code

we convert build system code into constraints

configured and

< == preprocessed

configuration option) Kbuild
preprocessor source code

settings (.config) Makefiles

Kconfig

kclause Kmax superc

N N N

logical constraints on .config files for each file:line

source code
locations

.config file
constraints

23

1) figure out .config constraints for covering the patch

patch file

l

patch coverage

constraint finder

\ .
coverage constraints

constraint solver (z3)

24

2) remove options preventing the patch from building

patch file original .config file

l l

.config file reducer

v -
coverage constraints < >
\4

constraint solver (z3) reduced .config file

25

3) add back settings that satisfy coverage constraints

patch file original .config file

l l

coverage constraints / < >

constraint solver (z3) reduced .config file

.config file repairer

l

repaired .config file

20

evaluating our approach

THE
] LINUX
FOUNDATION

experimental setup

e all patches from v5.12 -> v5.13

e X86-only configs

13,411 patches

e 1,296 are non-x86
1,177 are header only (nothing to build, future work)

10,938 patches to test on

29

experiment

e for each patch

* generate and repair allno, defconfig, one randconfig

* check patch coverage before and after krepair

e compare to coverage of allyesconfig
e patch coverage

 number of differences after repair vs. using allyesconfig

30

[Covered Partially covered Not covered Non-x86 Header only
o
‘c before I’r 10,499 1,296 1,177
3
©
(@)
'HE before_ s 8,853 1,296 1,177
O
o
'c before _416 8,333 1,296 1,177
8
o
S I e e EDOE T
0 2,500 5,000 7,500 10,000 10,938 12,500

Number of Patches

Figure 4: Patch coverage before and after repair for several common configuration files. *266 173 ¥397 3131.

31

13,411

Comparisons | Min Median 99th Max
allnoconfig
repaired <0.1% 0.7% 2.5% 5.8%
allyesconfig | 77.5% 78.6% 79.1% 79.2%
defconfig
repaired 0.4% 0.5% 3.0% 4.4%
allyesconfig | 70.6% 71.7% 72.5% 72.5%
randconfig
repaired 0.1% 6.7% 26.8% 35.7%
allyesconfig | 46.0% 71.4% 80.6% 84.9%

Table 1: Percentile distribution of repair size and allyescon-
fig size differences for each configuration file across all
patches. Size differences are the percentage of configuration
options that have changed out of all 15,446 possible options.

32

40 1 median

allnoconfig | o i 1 1 m) | L1 |

40.0
defconfig| mesmmiiiui i

45.1
randconfig| wmmmmm 1 1

0 250 500 750 1,000 1,250 1,500

Time to repair [S]

Figure 5: Distribution of krepair running times. The red line
is the median (second quartile), the box is the interquartile
range (too small to be visible for defconfig and randconfig),
and the vertical lines are the values below and above the first
and third quartiles respectively.

33

summary

krepaired .config files achieve similar coverage to allyesconfig

 5X-37x more coverage than the original config files

but retain most settings from the original .config file

* 1% to 7% change on average depending on config file, compared to 71%-79% for allyesconfig

and krepair is fast

* 4 minutes or less on 99% of repairs

34

researchers on the krepair project

Necip Fazil Yildiran (UCF) Jeho Oh (UT Austin) Julian Braha (UCF) Julia Lawall (INRIA/Lip6) Paul Gazzillo (UCF)

36

conclusion

* automated testers need to pick configs to boot/run/test
e picking a config is hard; arbitrary configs don’t cover most patches

» Krepair automatically edits config files with relatively small changes to ensure
patch coverage

try it out!
https://github.com/paulgazz/kmax

37

https://github.com/paulgazz/kmax

THE LINUX FOUNDATION

OPEN
SOURCE
SUMMIT

NORTH AMERICA

