
Krepair: Automatically Repairing
.config Files to Cover Patches

Paul Gazzillo, Necip Yildiran
University of Central Florida

#ossummit @paul_gazzillo

June 22nd, 2022

the linux kernel has a highly active codebase

2

~30k mailing list messages per month

~6k commits per month, 100s per day

e.g., ~13k commits between v5.12 and v5.13

used in billions of devices

all these code changes need testing

3
https://lwn.net/Articles/853039/

intel 0-day kernel test robot

• suite of tools: compile, boot, performance, etc.

• runs on new commits in linux-next

• continuously runs suite of tools

syzbot

• syzkaller system call fuzz tester

• continuously tests the kernel

• runs on linux-next, other versions

need to pick a .config before building and testing

• if .config doesn’t build patch, can’t test it

• the .config file decides what code to build

• ~15k configuration options

• even compile-time errors get committed!

4

.config selection with menuconfig

example of bug missed due to wrong .config

• 2016: memory leak bug introduced

• only possible under #ifdef CONFIG_MEDIA_CONTROLLER_DVB

• 2020-05: syzkaller fuzzer capable of finding it

• but CONFIG_MEDIA_CONTROLLER_DVB is disabled in its mem checking config

• 2020-08: sykaller regenerates configs

• happens to include CONFIG_MEDIA_CONTROLLER_DVB

• 2020-11: syzkaller finds the bug

• 2020-12: bug is fixed and backported to linux-stable

5

hard to make a .config to build a specific commit

6

intel 0-day kernel test robot uses built-in configs

• all the many defconfigs

• allnoconfig, allyesconfig, allmodconfig

• hundreds of randconfig

syzbot uses a set of hand-crafted configs

• runtime environment, architecture

• subsystems under test

• specific to tool

• kept update with changes to defaults

unlikely to build a commit with typical .config files

7

defconfig

randconfig

number of commits from v5.13 covered when building for x86
with defconfig or one randconfig

why not just use allyesconfig or allmodconfig?

• good for compile-testing, builds most code

• still doesn’t include all due to mutually-exclusive options, multiple architectures

• not ideal for run-time testing

• slow to build (3 hours vs. 20 minutes for defconfig)

• may not be bootable

• may be too large for testing resource-constrained devices

• can’t do representative performance testing

8

9

key problem: lots of ways to select .config files for testing
but no guarantee that committed changes get built

10

krepair

our solution:

.config file
repaired .config file

patchfile

doesn’t build
patchfile

builds patchfile
after krepair’s fixes

benefits

• fully automated

• agnostic to how testers pick their .config files

• retains most original settings

• keeps build size around the same as original

why is it so hard to pick a
config file?

build system controls code inclusion/exclusion

• 100s of thousands of lines of build code

• complex dependencies between options

12

build system turns .config file into binaries

13

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

build system

let’s look at the phases of build process

14

Kconfig Kbuild
Makefiles

C
preprocessor

C compiler,
linker

configuration option
settings (.config)

kernel binary
(vmlinuz)

the build system components that select code

15

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

selected
source code

patches add and remove lines of code
• #ifdef controls line inclusion

• CONFIG_GIC_NON_BANKED
needs to be enabled/disabled

• this patch modifies irq-gic.c

16
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8594c3b85171b6f68e34e07b533ec2f1bf7fb065

makefiles control file inclusion

• irq-gic.o inclusion is controlled by CONFIG_ARM_GIC

• .config must include both makefile and ifdef options

17

kconfig encodes dependencies between options

• GIC_NON_BANKED and ARM_GIC
are only enabled by other options

• those other options can only be
enabled when dependencies are met

18

hard just to figure out what config options need to
be set so that your .config file covers a commit

19

krepair in three steps

1. figures out requirements on config options that control the lines of code

2. removes options that are preventing patch from being built

3. adds back options that satisfy the requirements to build the lines of code

20

krepair
.config file

repaired .config file
patchfile

the krepair algorithm

we convert build system code into constraints

22

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option

settings (.config)

configured and
preprocessed
source code

kclause kmax superc

logical constraints on .config files for each file:line

we convert build system code into constraints

23

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option

settings (.config)

configured and
preprocessed
source code

kclause kmax superc

logical constraints on .config files for each file:line

.config file
constraints

source code
locations

1) figure out .config constraints for covering the patch

24

patch coverage
constraint finder

patch file

constraint solver (z3)

coverage constraints

2) remove options preventing the patch from building

25

patch coverage
constraint finder

reduced .config file

.config file reducer

patch file

constraint solver (z3)

original .config file

coverage constraints

3) add back settings that satisfy coverage constraints

26

patch coverage
constraint finder

reduced .config file

.config file reducer

patch file

constraint solver (z3)

original .config file

.config file repairer

repaired .config file

coverage constraints

demo

evaluating our approach

experimental setup

• all patches from v5.12 -> v5.13

• x86-only configs

• 13,411 patches

• 1,296 are non-x86

• 1,177 are header only (nothing to build, future work)

• 10,938 patches to test on

29

experiment

• for each patch

• generate and repair allno, defconfig, one randconfig

• check patch coverage before and after krepair

• compare to coverage of allyesconfig

• patch coverage

• number of differences after repair vs. using allyesconfig

30

31

32

33

summary

• krepaired .config files achieve similar coverage to allyesconfig

• 5x-37x more coverage than the original config files

• but retain most settings from the original .config file

• 1% to 7% change on average depending on config file, compared to 71%-79% for allyesconfig

• and krepair is fast

• 4 minutes or less on 99% of repairs

34

conclusion

researchers on the krepair project

36

Julian Braha (UCF)Necip Fazıl Yıldıran (UCF) Jeho Oh (UT Austin) Julia Lawall (INRIA/Lip6) Paul Gazzillo (UCF)

conclusion

• automated testers need to pick configs to boot/run/test

• picking a config is hard; arbitrary configs don’t cover most patches

• krepair automatically edits config files with relatively small changes to ensure
patch coverage

supported by NSF CCF-1941816 and CCF-1840934

37

try it out!
https://github.com/paulgazz/kmax

https://github.com/paulgazz/kmax

