
Paul Gazzillo

University of Central Florida

April 15th, 2021

https://paulgazzillo.com

Progress Towards a Comprehensive Solution

Helping Linux Maintainers
Localize Configurations

@paul_gazzillo

https://paulgazzillo.com

the linux kernel has tons of configuration options

2

this configurability brings maintenance challenges

over 15,000 configuration options
about 20 million source lines of code

over 20,000 C files

and growing!

3

maintainers need a configuration file to test a patch

4

given a patch, what configurations does it affect? (jmake, lawall et al)

given a bug, what configurations does it appear in? (config-bisect)

what’s a minimal configuration that includes specific source? (config-bisect)

what code is no longer configurable in the kernel? (undertaker, tarler et al)

can we automatically figure out the
right .config files to use given a patch?

Julia Lawall
Inria/LIP6

a common problem: mapping code back to the
configuration specifications that control that code

5

configuration localization:
given some program behavior, what are all the
configurations which include that behavior?

if we can automate configuration localization, then
we can enable automated tools for many problems

6

SPLC 2018 challenge case

7

how does Kbuild work and how can
we do configuration localization?

8

what does linux’s build system do?

9

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

build system

let’s look at the phases of build process

10

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

10

Kconfigconfiguration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

10

Kconfig Kbuild
Makefiles

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

10

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

10

Kconfig Kbuild
Makefiles

C
preprocessor

C compiler,
linker

configuration option
settings (.config)

kernel binary
(vmlinuz)

the build system as code generation using
metaprogramming

11

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

configuration localization is finding the inverse of
the build process

12

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

all possible
.config files

source code
locations

each phase of the build encodes rules to control
the inclusion and exclusion of source code

13

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/super.c:

#ifdef CONFIG_UFS_DEBUG
/*
 * Print contents of ufs_super_block, useful for debugging
 */
static void ufs_print_super_stuff(struct super_block *sb,
 struct ufs_super_block_first *usb1,
 struct ufs_super_block_second *usb2,
 struct ufs_super_block_third *usb3)
{
 u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
// ...
#endif

each phase of the build encodes rules to control
the inclusion and exclusion of source code

14

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/Makefile:

obj-$(CONFIG_UFS_FS) += ufs.o
ufs-objs := balloc.o cylinder.o dir.o file.o ialloc.o inode.o \
 namei.o super.o util.o

each phase of the build encodes rules to control
the inclusion and exclusion of source code

15

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/Kconfig:

config UFS_DEBUG
 bool "UFS debugging"
 depends on UFS_FS

config UFS_FS
 tristate "UFS file system support (read only)"
 depends on BLOCK

we can use boolean logic to represent the
“buildability” of code at each step

16

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

we can use boolean logic to represent the
“buildability” of code at each step

16

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

and andA(opt1, opt2, ...) B(opt1, opt2, ...) C(opt1, opt2, ...)

configuration localization then becomes the
boolean satisfiability problem

17

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

build_constraints(opt1, opt2, ...)

step 1: generate constraints for
given source code

step 2: find solutions with a SAT/SMT
solver to get .config files

there are many tools that extract linux feature models

18

lvat

kconfigreader

dumpconf

kclause

kbuildminer

kmax

typechef

superc

…

(many more)

but extracting models is not the whole story

19

unifying output

scaling to linux

high compatibility with linux configuration languages

high fidelity to build system behavior

producing drop-in .config files

quality-of-life features for users

plocalizer: creates .conf files for patches

20

currently localizes entire .c files (kconfig and kbuild)

currently integrating preprocessor conditions

still investigating runtime conditions, e.g., IS_ENABLED

evaluating efficacy on real-world patches

upcoming challenge: patches involving configuration specifications themselves

Necip Yildiran Julian Braha

graduate students currently working on this

tool demo video today at 18:30 CEST

21

conclusion

22

the kernel’s extreme configurability brings maintenace challenges

automatic configuration localization can help automate several maintenance tasks

build system analysis configuration constraints

the plocalizer tool will localize configurations for given patches

prototype is working for a subset of the problem

https://github.com/paulgazz/kmax

https://github.com/paulgazz/kmax

